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Inferring the Logic of Collective

Information Processors
Bryan C. Daniels

1. Introduction

Biology is full of examples of complicated, carefully regulated, and often slightly
mysterious examples of information processing: A housefly senses a gust of
air and moves its wings, evading my flyswatter; a cascade of signaling proteins
translates a hormone detected at a cell’s surface into the production of specific
genes in the nucleus; a colony of ants finds a new suitable rock crevice to use
as a nest after its old one is destroyed. In each case, large sets of individual
components must coordinate to carry out different actions depending on an
environmental input.

A major challenge for modern science is to connect the small-scale dynamics
of these individual components to the information processing consequences
at the larger scale of the aggregate whole. If we think of biological systems as
performing computations, transforming sensory input into coordinated and
adaptive output behavior (Figure 3.1), the goal is to comprehend the logic of
these distributed computers.

In this chapter, I summarize a new approach for understanding collective
information processing that is emerging at the interface of machine learning,
statistical physics, information theory, andmore traditional biological and social
science. This approach can be viewed as expanding on existing notions of
collective computation and distributed computing, which in the past focused
mainly on theoretical results in cognitive science and neuroscience (Rumelhart
andMcClelland, 1996), in order tomake themmore data-rich and broaden them
to include other systems such as collections of fish or ants or people or proteins
(Figure 3.1; Couzin, 2009; Solé et al., 2016). Using extensive data sets, we are able
to focus on how specific collective systems operate, going beyond generalized
theory.

The challenge is formidable for at least three reasons: (1) the large number of
interacting parts in each system means there are many potential contributors to
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Fish: Predator location Group direction

Neurons: Sensory signals Decision, action

Proteins: Chemical signal Gene expression

Ants: Nest quality Nest choice

Politicians: Individual opinions Law

Genes: Developmental cues Cell type

Individual scale input Aggregate output

Figure 3.1 Interpreting adaptive collective behavior as computation. Across
diverse biological and social systems, individuals detect information (input), such
as the quality of a potential nest site visited by individual ants, that is combined to
determine a single behavior of the aggregate (output), such as the nest choice of an
entire ant colony. In each case, the aggregate output is the outcome of complicated
interactions among a large number of individuals. Our goal is to understand how
the aggregate behavior is produced by the behavior of individual components.

the final output, leading to large, unwieldy models; (2) the number and nonlin-
earity of interactions means model outputs are dependent on their component-
level parameters in highly nontrivial ways, making parameter estimation diffi-
cult even if the structure of interactions is known; and (3) different examples
of the same adaptive system often vary in their particular structure, making it
necessary to build a new model for every new case.

In this chapter, I argue for a two-step process to best extract the logic of
collective information processors (Figure 3.2). First, a suite of machine-learning
approaches are used to infer a detailed model from data. This step gathers
data into a predictive framework that encompasses the full complexity of the
system at the level at which data is available. Second, and just as challenging,
dimensionality reduction techniques are applied to the full model in order to
produce simplified explanations. This abstraction step prunes away detail to
more intuitively explain low-dimensional behavior at the aggregate scale.

Information measures are key to this perspective. At the most fundamental
level, information processing provides a basic conceptual framework for what
living systems are doing. In the case of collective systems, measures such as the
Fisher information can be used to connect individual components to aggregate
scales. Bayesian inference techniques benefit from concepts in information
geometry, and Bayesian model selection can be interpreted as matching the
amount of information encoded in the data to the models that describe the
data. Finally, information compression is a natural interpretation of dimension
reduction methods that lead to simplified understanding.
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Figure 3.2 A two-step strategy for extracting the logic of biological collective
information processors. First, a detailed model is inferred from data taken at the
level of individual components. Next, successively more abstract representations
allow a simplified understanding of the most important drivers of aggregate output.

The goals ofmachine learning, artificial intelligence, big data, and particularly
data science partially overlap with what we seek in the science of collective
behavior: predictive and simplified models of complex data sets. Yet, we are
primarily motivated here by fundamental questions about living systems: How
do collective systems remain adaptive? How do individual components manage
to successfully regulate behavior that involves many other components? What is
carefully tuned by evolutionary selection, and what is compensated for through
active adjustment? What general strategies do distributed biological systems use
to create adaptive logic?

Following the two-step framework of Figure 3.2, let us consider inmore detail
how to accomplish the tasks of inference and abstraction. We will look at each
task in turn, reviewing the challenges that arise and the corresponding state-of-
the-art methodologies being developed to address them.
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2. First Task: Infer Individual-to-Aggregate Mapping

In biological collectives, the mapping from individual components to aggregate
behavior is often unknown, difficult, intricate, degenerate, and nonlinear. The
first challenge, then, is to transform data into a predictive model that connects
the individual to the aggregate scale.

Performing inference, we search for the most accurate model we can find,
evaluating our success by how well we can predict everything we can measure
about the system’s behavior. With the goal of encompassing all measured vari-
ables, often large in number in collective systems, this inference step is likely to
produce a model that is particularly complex. This is represented at the bottom
of Figure 3.2: a complicated model that acts as an accurate summary of our
knowledge, a gathering of all relevant information.

Three major difficulties arise in the inference step:

• Heterogeneity and a large amount of potentially relevant detail at the
individual scale (approached using big computers, big data, and a nuanced
perspective on the relationship between modeling and theory)

• Unknown interaction structure and limited data (approached using max-
imum entropy and other effective modeling techniques, making use of
model selection and regularization)

• Parameter compensation and emergence (approached using the concept of
sloppiness and learning to live with parameter uncertainty)

Each of these issues has been the subject of extensive effort in the past few
decades, which we review in this section.

2.1 Inference Challenge 1: An Abundance of Potentially Relevant
Detail—Solved by Large-Scale Reverse Engineering

The fundamental challenge in understanding collective systems is clearly that
they involve lots of parts. It is often impossible tomeasure anddaunting to reason
about the large number of individual-level properties that could be important.

In some cases, this complexity can be cleverly circumvented. The field of
statistical physics produces simple mathematical explanations of material prop-
erties in terms of the collective behavior of atoms and molecules, using tech-
niques like the renormalization group (Wilson, 1979; Goldenfeld, 1992). But
the cleanest explanations rely on multiple assumptions that often do not hold
in biological and social systems. First, explanations in statistical physics often
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assume that we know the interactions between individual components and that
these interactions are uniform across the system.1 Second, in materials science,
we are interested in scales that are extremely large compared to individual
components—humans typically care about collective properties involving tril-
lions of trillions ofmolecules. In short, we know how to parsimoniously describe
systemswithmany contributing parts when interactions are simple andwhenwe
zoom out to include a huge number of them.

But the individual neurons inmy brain arewired up differently than yours; the
likely votes byCongress depend on changing individuals and changing opinions;
a large number of distinct and overlapping gene-regulatory networks exist in
a given cell. A typical number of individuals in these systems is hundreds to
millions or at most billions, always vastly less than a trillion trillion. So what
happens when individual components are diverse and changing, when there are
a large but not huge number of them, and when each specific system involves
myriad contingencies and historical contexts?

Such challenges are not new to science. We approach them as usual with
experimentation and hypotheses, building models using carefully reasoned
intuition and then testing them and gradually refining them. What is uniquely
challenging about these systems is the volume of potentially important detail,
the richness of information. It is difficult to hold all the important variables in
one’s head at once, and given the number of diverse systems we might want to
understand, it takes too long to model each specific system anew.

Much effort has been aimed at the problem of systematically producing
predictive models of such complicated collective behavior. The dominant con-
ceptual framework is that of the network (Newman, 2010; Natale, Hoffmann,
Hernández, and Nemenman, 2018). The proliferation of network explanations
for collective biological behavior has ranged in scale from gene-regulatory
systems (e.g., Bonneau, 2006; Peter and Davidson, 2017) and neurons (e.g.,
Bassett et al., 2011) to groups of organisms (e.g., Rosenthal et al., 2015). The
implicit and reasonable assumption has been that the best way to proceed is
simply to enumerate all the complicated details, pinning down the behavior of
every individual and how it interacts with others. When this is tractable, the
attitude is to be agnostic as to which details are most important to the aggregate
behavior.

Network science is a large and successful scientific enterprise, and a huge
number of methods have been developed to “reverse-engineer a network”
from data (for a few representative cases and reviews, see Natale et al., 2018,
and Bonneau et al., 2006). The zoo of existing methods embody a range of

1 Or, if we do not know specific individual interactions, we assume any non-uniformities average
out in such a way that we can understand the system in terms of a typical average individual.
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typical modeling assumptions. For instance, we may assume that individuals are
characterized by binary, discrete, or continuous states; that individuals either
have dynamic states that update in discrete or continuous time, or that their joint
states are described by an equilibrium function; and that interactions among
individuals are described by linear or nonlinear functions. These modeling
choices define the space of models over which an inference routine must search,
which typically proceeds using a minimization algorithm that matches the
model to statistics of the data. The results are often interpreted statistically in
a Bayesian framework.

If one starts with abundant individual scale data, there is not much to decide
in setting up network inference besides these initial modeling assumptions, and
the strength of predictionswill be determined by the veracity of the assumptions.
Fast computers with large memories allow for inferring models of collective
behavior with unprecedented detail.

In contrast to inferring detailed networks for specific systems, much of the
initial theory of adaptive distributed systems relied on simplifying assumptions
that did not require knowing all individual-level details. For instance, we may
assume that gene-regulatory networks or neural networks are randomly con-
nected, and then we may ask about the properties of these random networks
(e.g., Kauffman, 1969; Amit, Gutfreund, and Sompolinsky, 1985). Classic results
in parallel distributed computing (“neural networks”) have shown that arbitrary
computations can be carried out by abstracted neural units, if we are allowed to
impose specific interactions.

Automated network inference is reaching an exciting point at which we can
begin to theorize about collective behavior without having to rely on these
assumptions. We instead can infer and use as our starting point a model of
the full, messy, heterogeneous system, using data from, say, simultaneously
measured neurons or simultaneously measured genes, as is now becoming
routine. We may even study an ensemble representing typical cases of these
networks, as are presently being accumulated in online repositories (Daniels
et al., 2018).

Data and knowledge of the space of possible interactions are often limited,
however, requiring new concepts, which we discuss in the following inference
sections. Machine learning has faced this same problem and, in a limited sense,
has already solved the problem of getting predictive power in complicated
heterogeneous systems. The trade-off for gathering such extensive knowledge
is that, in the extreme case, we must resign ourselves to being unable to have a
human check all the details.Machine learning has already surpassed the speed at
which humans can construct predictive models: automated language translation
or image recognition involves incomprehensibly large sets of data, variables,
and interactions, and the resulting learned models are represented in a way
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that would not be easily understood or checked by a human. The potential
usefulness to the science of collectives is that machine-learning techniques are
already forming predictive models that capture important aggregate properties.
These inscrutable but predictive descriptions provide a useful starting point for
constructing understandable scientific theories of collective behavior.

Thus, the increasing speeds of machine learning and statistical inference give
us the opportunity to model a large number of distinct systems. But beyond
predictions and parsimonious descriptions of the aggregate scale, we also want
to understand adaptive computations in terms of the actual individual-level
interactions in each system. We want to know how a brain classifies images
using neurons. How do we incorporate important but limited knowledge about
mechanistic interactions at the scale of individual components?

2.2 Inference Challenge 2: Structural Uncertainty Due to Limited
Data—Solved by Hierarchical Model Selection

and Regularization

In our network inference problem, we want to know how individuals influence
each other, yet often, even with detailed measurements, we do not have enough
data to pick out the correct interactions from the space of all possible interac-
tions. Even after selecting a particular class of models, the space of all possible
models grows combinatorially with the number of individuals N—that is, it
becomes huge. This means that even with a large amount of data, when N is
moderately large, the space of models can easily overrun the space of all possible
data. In this underdetermined regime, in which a model can perfectly fit any
possible data, the model becomes useless. The challenge is then to efficiently
make use of the detail present in the data while avoiding overfitting.

A particularly productive approach to this problem is to use models that
match their level of complexity to the data and questions at hand. Complicated
models can be produced if necessary, but when data is limited the model stays
simple, in a way that produces better predictions. Intuitively, this works by
ignoring smaller signals in the data that are likely caused by nonsystematic noise.

In this way, we match the level of detail, or dimensionality, that is supported
by the data. Machine learning may be interpreted in this way more generally,
where the process of restricting a model to lie in or close to a lower dimensional
subspace is called regularization. This is dramatically realized, for instance,
in reservoir computing, where input is nonlinearly transformed into a high-
dimensional space and only the most predictive low-dimensional linear combi-
nation is retained (Lukoševicius and Jaeger, 2009). Note that such regularization
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can also be interpreted as compression or model simplification (explored in
section 3 of this chapter). Regularization can be used to find the appropriate level
of complexity that produces the maximally accurate model (bottom of Figure
3.2), and similar techniques can then be used to throw away more detail and
further reduce the dimensionality (moving toward the top of this figure).

Here, I highlight two approaches that use this conceptual structure. First, in
a stochastic equilibrium modeling framework, we can construct a model with
output that is as random as possible, adding interactions until statistics of the
data are sufficiently well fit.This leads tomaximum entropy approaches. Second,
in a setting of deterministic dynamics, complexity in the form of nonlinear
interactions and “hidden” unmeasured dynamical variables can be added until
the system produces dynamics that fit time series data sufficiently well.

As a side note, one might object that putting a lot of effort into dealing with
limited data is silly in that we should instead emphasize simply taking more or
better data. Though a new experiment is often a good option, having “limited
data” can sometimes be interpreted not as a problem with the experiment but
a fact of life in the system.2 Some systems, like a macaque society, have a stable
structure only over a limited timescale. Taking more data is not an option, and
asking for the “true” structure is not a well-defined question. Yet we may still
want to characterize the interactions that are strong enough to have predictable
effects.

2.2.1 Maximum Entropy Modeling
One powerful modeling approach in collective behavior is to treat observed
states of the system as independent snapshots and then infer the probabilities
withwhich all possible states of the systemarise.Thismakes themost sensewhen
dynamics are fast compared to the phenomenawe are interested in and therefore
ignorable. This type of model is common in equilibrium statistical physics.

A typical case starts with a system with N individuals, each of which can
be either active or inactive—for instance, neurons that are firing or silent, or
fish that are startled or calm. A static model produces the probability p( ⃗x) of
any given N-dimensional binary state ⃗x of active and inactive individuals. With
enough data, we could estimate these probabilities by simply using the frequency
with which every possible aggregate state occurs:

p( ⃗x) ≈ number of observations of state ⃗x
total number of observations . (3.1)

2 This is also related to the problem of sloppiness discussed in section 2.3.
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The glaring problem for largeN is that there are 2N possible states, so that getting
an accurate estimate of these probabilities requires more than 2N observations.
The idea of the maximum entropy approach is to instead force the model to
reproduce only statistics that we canmeasure accurately. Specifically, the entropy
of p( ⃗x) is maximized given the constraint of fitting some given statistics.

If we can makemanymeasurements of the simultaneous states of individuals,
then natural, easily observed statistics are the frequencies withwhich individuals
are active, the frequencies with which pairs of individuals are jointly active, and
so on. For instance, the probability that individuals i and j are jointly active puts
a specific constraint on a marginal of p( ⃗x):

p(i and j active) =
∑⃗x with xi=1,xj=1

p( ⃗x) ≈ number of observations of i and j jointly active
total number of observations . (3.2)

Typically, pairwise correlations will be most accurately captured by data, and
higher-order correlations will require progressively more data. This motivates
the typical form for a maximum entropy expansion, the form of which turns
out to be straightforward to derive (Schneidman, Berry, Segev, and Bialek, 2006;
Mora and Bialek, 2011; Daniels, Krakauer, and Flack, 2012, 2017):

p( ⃗x) ∝ exp(−∑
i
hixi−∑

ij
Jijxixj−∑

ijk
Kijkxixjxk+…). (3.3)

The parameters Jij, Kijk, . . . represent effective interactions between individuals
that make specific subgroups more or less likely to be simultaneously active.
While the form of the maximum entropy distribution (Eq. [3.3]) can be writ-
ten down analytically, finding the parameters that match the statistics for a
particular data set is a difficult inverse problem. Many approaches have been
proposed for solving these inverse problems efficiently and in various approxi-
mations (Lee and Daniels, 2019).

The expansion after adding each term in Eq. (3.3) is the distribution with
maximum entropy that fits those correlations. This is a form of hierarchical
model selection: we add degrees of freedom (interactions) to the model until we
fit the data well enough, but we do not go back to remove weak or unimportant
lower-order interactions. Then each successive model in the list includes strictly
more structure than the last, implying that the entropy monotonically decreases
as we include more terms and thereby incorporate more information from the
data. In cases for which we can estimate the entropy of the full distribution,
we can track how much of the information the model captures as we add more
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terms (Schneidman et al., 2006). The information captured by pairwise models
is in many cases large, with not much left to be fit by higher-order interactions
(Schneidman et al., 2006; Merchan and Nemenman, 2016).

Including all possible pairwise interactions can go too far and lead to over-
fitting if, for instance, some individuals are rarely active, meaning that joint
activations are prohibitively rare. More sophisticated versions of the maximum
entropy approach instead include only the most important interactions (Gan-
mor, Segev, and Schneidman, 2011) or use a cluster expansion that incorporates
pairwise statistics only among clusters that contribute most to the joint entropy
(Cocco and Monasson, 2012).

The maximum entropy approach is also useful in collective behavior in more
general contexts than binary states and correlations. In principle, any state space
and set of constrained statistics can be incorporated, such as the mean, variance,
and correlations of the velocities of flocking birds (Bialek et al., 2014).

Maximum entropy models have been successfully applied to the collective
behavior of multiple biological systems, including neurons (Schneidman et al.,
2006), flocking birds (Bialek et al., 2014), and animal conflict (Daniels et al.,
2012) (though see alsowarnings about extrapolating pairwisemaximumentropy
results to larger systems [Roudi, Nirenberg, and Latham, 2009] and the dangers
of inferring interaction structure in the case of common input [Schwab, Nemen-
man, and Mehta, 2014]).
2.2.2 Dynamical Inference
In inferring dynamical systems, too, model selection can be used to adapt to the
amount of information in the data. Imagine startingwith data from a system that
responds to an input with reproducible dynamics. This could be a cellular signal
transduction cascade (Daniels et al., 2008), metabolic oscillations (Daniels and
Nemenman, 2015), or a worm responding to sensory input (Daniels, Ryu, and
Nemenman, 2019). The goal will be to represent the observed dynamics using a
set of differential equations. In a very general form,

d
dt ⃗x(t) = ⃗f( ⃗x(t), ⃗y(t), ⃗𝜃x)
d
dt ⃗y(t) = ⃗g( ⃗x(t), ⃗y(t), ⃗𝜃y) , (3.4)

where ⃗x is the vector of observed dynamical variables, ⃗y represents unobserved
“hidden” variables, and ⃗𝜃 contains parameters controlling the dynamics of
individual variables and their interactions. Of course, the important modeling
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decisions arise in defining the forms of f and g, setting the space of possible
models over which the inference scheme should search.

The general dynamical inference problem can quickly become unwieldy
in that the space of possible models is enormous and impossible to search
comprehensively. One possibility is to use no hidden variables, adding descrip-
tive power (information) by increasing only the complexity of the function⃗f. The search space of possible functions can be constrained to a set of preset
functions that combine to form ⃗f, either using mathematically convenient func-
tions (x, x2, y, xy, cos(x), . . . ) (Schmidt and Lipson, 2009; Brunton, Proctor,
and Kutz, 2016) or functions with biologically inspired nonlinearities (tanh(x),(1+ exp (−x))−1, . . . ) (Daniels and Nemenman, 2015).

Another possibility is to add complexity both in the form of the right-hand
sides of Eq. (3.4) and the addition of hidden dynamical variables ⃗y, provid-
ing the opportunity to predict the existence of important unmeasured system
components (Daniels and Nemenman, 2015). This approach is particularly
useful when data are only available at an aggregate scale (as in Figure 3.4) or
some individual-level details are missing. Unfortunately, this only adds to the
enormity of the potential search space. Hierarchical model selection can be
used as a counteraction: analogously to the maximum entropy expansion in
Eq. (3.3), wemake themodel selection processmore efficient by predefining a set
of models of increasing complexity that can eventually fit any data, stopping the
search when the model fits the data within experimental uncertainty (Daniels
and Nemenman, 2015).

These dynamical inference approaches have been successful in producing
predictive models from time series in physical systems (Schmidt and Lipson,
2009), simulated data from glycolysis oscillations (Daniels and Nemenman,
2015), and animal locomotion (Daniels et al., 2018).

2.3 Inference Challenge 3: Parameter Uncertainty Due to Scale
Separation and Sloppiness—Solved by Bayes and not Focusing

on Individual Parameters

Besides the difficulties encountered in the last section in constraining the
interaction structure due to having a limited number of datapoints, there is
another fundamental challenge to the inference of predictive models in collec-
tive systems: a problem that arises with data at the aggregate scale even if we have
a huge amount of it. We think of models here as mappings from individual-level
mechanisms to aggregate-scale consequences (Figure 3.3). The problem lies in
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Figure 3.3 Parameter space compression, sloppiness, and simplified emergent
models. A schematic representing the idea that some information is lost and some
gets amplified in coarse-graining. The 3D plots represent probability distributions
over behavior, both at the scale of individuals (bottom) and the scale of the
aggregate (top). a) The large space of possible behaviors at the individual scale
(bottom) typically maps onto a lower-dimensional output space at the aggregate
scale (top). This can be understood as parameter space compression, the idea that
moving to larger scales (up in this diagram) causes some effective parameter
directions to decay. The dashed line on the top plot represents a simpler,
lower-dimensional model that ignores the decaying parameter direction, but still
well represents the collective behavior. This case also depicts a collective instability
leading to amplification away from the center point. This creates two distinct
possible aggregate behaviors, and relates to the idea of phases in statistical physics.
See Section 3.2.1. b) For the same system, we now focus on a case in which we
make a precise measurement at the aggregate scale. The same parameter space
compression implies that even highly constrained aggregate behavior (top)
typically corresponds to large regions of possible individual-scale parameters
(bottom), leading to the phenomenon of sloppiness. See Section 2.3.
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the fact that the typical properties of thesemappingsmake it difficult to constrain
parameters at the individual scale.

Not surprisingly, changes at the individual scale can have nonobvious
effects—this is what makes complex systems interesting. Perturbing an
individual fish may do nothing, while perturbing three fish simultaneously has
huge effects (synergy). Removing a protein froma systementirelymaymodify an
existing signaling pathway to take over and give similar output (compensation
and robustness). These effects clearly make parameter fitting more challenging
by virtue of being highly nonlinear.

Whatmay be surprising, however, is that (1) there is some statistical regularity
to the types of nonlinearities we find in these mappings in real systems (the
phenomenon of sloppiness); and (2) the ubiquity of these phenomena point
us toward an approach that deemphasizes finding the “correct” individual-scale
parameters and instead uses Bayesian ensembles over parameters.

The idea is represented schematically in Figure 3.3. Parameters at the individ-
ual scale may be very unconstrained (wide probability distribution representing
a huge space of possibilities at the bottom of Figure 3.3a), while they get
mapped onto only a small space of possible aggregate behaviors (effectively
lower-dimensional, thin-wedge probability distribution at the top of Figure
3.3a). This means that some directions in the individual-level parameter space
are unimportant or “sloppy,” while only a few are important or “stiff.” The effect
can be dramatic in that even taking lots of measurements to highly constrain the
aggregate behavior (Figure 3.3b top) still leaves the possibility of huge swaths of
parameter space at the individual level (Figure 3.3b bottom).

Properties of this mapping can be interpreted information-theoretically in
terms of the Fisher information matrix. The Fisher information is a generalized
measure of sensitivity of model outputs (what we call aggregate level properties)
onmodel parameters.TheFisher information can be interpreted as the curvature
of the Kullback-Leibler divergence of the distribution of model behavior as
a model parameter is varied. With units of bits divided by the parameter’s
units squared, it answers the question of how quickly the output behavior
becomes distinguishable when that parameter is varied. The Fisher information
for parameter 𝜇 and aggregate state x is the average squared derivative of the
log-likelihood function:

ℐx (𝜇) =∫(𝜕 logp(x)𝜕𝜇 )2

p(x)dx. (3.5)
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The more general Fisher information matrix describes sensitivity to individual
parameters and to simultaneous changes to pairs of parameters:

ℐx (𝜇,𝜈) =∫ 𝜕 logp(x)𝜕𝜇 𝜕 logp(x)𝜕𝜈 p(x)dx. (3.6)

TheFisher information is also useful (see section 3.2.1) in quantifying functional
sensitivity. Within model inference, it is a convenient means of describing
parameter uncertainty.

The phenomenon of sloppiness describes properties of the Fisher information
matrix that are common across a large number of complex dynamical models
from systems biology and elsewhere (particularly those with many interacting
components, the exact sort we encounter in modeling collective behavior). In
most large nonlinear models, eigenvalues of the Fisher information matrix span
many orders of magnitude and are roughly evenly spaced in log space. There are
typically a few large “stiff” eigenvalues, with corresponding eigenvectors that
describe directions in parameter space that are tightly constrained by experi-
mental data. Remaining are a plentiful number of extremely small eigenvalues
deemed “sloppy,” corresponding to directions in parameter space that can be
varied a large amount without changing the aggregate behavior (see Figure 3.3b)
(Transtrum et al., 2015).

Roughly speaking, sloppiness is caused by nonlinear compensation: in large
systems, it is usually the case that the aggregate scale effects of varying one
parameter can be approximately canceled by varying some combination of other
parameters. Typically, this sloppy compensation is highly nonlinear, so it is not
easy to redefine parameters in such a way to remove sloppiness (as it would be
if the mapping were linear).

This is important to inferring models of collective behavior because, even
if we know the individual-scale interaction topology, typically many related
parameters (rate constants, etc.) are unmeasured. We are then forced to fit
them to the data, often using measurements at the aggregate scale. Sloppiness
then implies that we will be unable to tightly constrain many directions in
parameter space.The practical implication is that the aggregate-level data will be
compatible with large swaths of parameter space (Figure 3.3b), leaving certain
details of the individual scale unknown. Because sloppiness usually becomes
extreme in large systems, this parameter uncertainty persists even as we take
lots of data at the aggregate scale, becoming a fundamental problem for fitting
models of collective behavior.

The solution: stop worrying about fitting a precise set of parameters. (See
Daniels, Dobrzynski, and Fey, 2018) for a more detailed discussion of parameter
estimation in systems biology.) One tactic is simply to choose a specific set of
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parameters that sufficiently well fits the data. Surprisingly, this often produces
predictive models (Transtrum et al., 2015) but can be dangerous: it is possible
that predictions other than those used to constrain the model depend strongly
on the position within the sloppy subspace of possible parameters. Safer is a
Bayesian approach,which characterizes the entire sloppy subspace of parameters
that fit the data within statistical uncertainty. The most straightforward way
to do this is to use Monte Carlo methods to sample from the posterior over
parameters; measuring a model output of interest using each member of the
parameter ensemble then estimates the posterior distribution of the output.

More broadly, sloppiness suggests that lower-dimensional descriptions should
be possible that succinctly capture the behavior controlled by stiff parameter
directions. That brings us to our second task: finding simplified descriptions of
collective behavior.

3. Second Task: Find Abstract System Logic

Wedon’tmodel the trillion trillionmolecules in a glass of water to predict what it
does; instead we use effectivemodels at a different scale. In the past one hundred
years, statistical physics and high-energy physics have made great strides in
understanding how this works in simple systems. Much of the excitement in
the field of biosocial collective behavior is in learning how to analogously build
simple but relevant effective models in more complicated systems.

What we get from inference procedures described in section 2 are explanatory
models that may be arbitrarily complicated and not easily interpreted. This is
the “black box” problem. Generalized methods from machine learning, such as
neural networks and reservoir computing, are most prone to this problem, as
they tend to intentionally overcompensate with the amount of included detail
(Denker et al., 1987. But even approaches that explicitly favor simplicity (as in
section 2.2) end up looking like a spaghetti tangle3 when there is enough data to
support it. That is, even a well-characterized system can be hard to understand.
The recent excitement in neuroscience about ever-larger and more detailed data
sets provides a good motivating example: Suppose we will someday be able to
simultaneously measure and faithfully model every neuron in the human brain.
Then what next?

Abstraction and simplification are crucial elements in the story of collective
behavior. Across all the examples presented in Figure 3.1, the magic of
collective behavior lies in large collections of individuals producing coherent

3 Also known as a hairball (Lander, 2010) or ridiculogram (attributed to Marc Vidal).
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low-dimensional dynamics. Our aim is to discover what drives this low-
dimensional aggregate behavior and connect it to what we know about the
complicated behavior of individuals. The challenge, then, is to find ways to
compress existing detailed explanations into simplified understanding.

3.0.1 Why Do We Want to Do This? Advantages of Coarse-Grained,
Dimensionality-Reduced Description

We put effort into simplifying models because systems become easier to under-
stand when one finds the right coarse-grained representation. In some cases,
we can put this in explicit information-theoretic terms: how many bits do I
need to remember to predict system behavior (Daniels et al., 2012)? In some
cases, it is a loose qualitative statement that, for instance, categorizing a system
as implementing a Hopf bifurcation is easier to conceptualize than a detailed
network representation. At a different level, simplifiedmodels are also important
to understand in that compression is often happening in the system itself, with
individual components cognitively adapting to their collective environment
(Daniels et al., 2012; Flack, 2017).

This is part of a broader epistemological stance that recognizes “effective”
models as legitimate and at times preferable to models defined at a detailed scale
(Shalizi and Moore, 2003; Wolpert, Groschow, Libby, and DeDeo, 2015). It is
also part of an ongoing debate about how to understand evolutionary forces
acting at aggregate scales different than the familiar individual genome scale.⁴
In the context of other complex, multiscale systems—for example, modeling
whole cells (Babtie and Strumpf, 2017), animal behavior (Stephens, Osborne,
and Bialek, 2011), or even abstract systems like cellular automata (Crutchfield
and Mitchell, 1995)—this point is well appreciated: the goal is not only to
encapsulate all of our knowledge in themost detailedmodel possible, but also to
create approximations that are easier to work with, analytically and intuitively.
There is a tension between our “best current understanding” or most accurate
model and the model that gives the best intuition.

⁴ This can turn into a lofty philosophical argument about epistemology and ontology—is our
effective understanding ontologically “real” or just “an accurate description of our pathetic thinking
about nature” (Gunawardens, 2014)? Is there an objectively “true” level at which aggregate objects
and phenomena exist (Shalizi and Moore, 2003; Hoel, Albantakis, and Tononi, 2013)? Here we will
instead focus pragmatically on predictive modeling—the best description is the one that makes the
best predictions (which can depend on the question being asked). As was famously quipped by
George Box: “All models are wrong but some are useful” (Box, 1979).
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3.0.2 Do We Expect to Be Able to Compress? What Does “Logic”
Look Like?

A modern understanding of why effective models work (Transtrum et al., 2015;
Machta, Chachra, Transtrum, and Sethna, 2013) stems from renormalization
group ideas used in statistical physics to characterize phases ofmatter.⁵The basic
idea is to track howdifferent types of interactions becomemore or less important
as we “zoom out” from a system. Analogously to the Central Limit Theorem, the
effects of some interactions arewashed out, whereas other “relevant” interactions
become more important. The relevant interactions are kept in the effective
model, and we forget about the irrelevant ones, making for a simpler model.
In this way, we have explicitly constructed the model so that it predicts the
aspects that we deem most important. In physics, the most important aspects
are typically those that occur at large spatial scales or low-energy scales.

In contrast to defining aggregate states in terms of space or energy, in
adaptive collective behavior, the most important aspects are those that define
informational properties. The key first question is then: What are the important
aggregate states that we think of the system as computing? In the theory of
computation, these aggregate logic states that define the computation are known
as “information-bearing degrees of freedom” (Landauer, 1961).We refer to them
here as informational states.

In aiming for simpler representations of adaptive systems, we can therefore be
more focused in that we need not care about the simplest explanation of the sys-
tem in general, but the simplest one that captures the informational states. In this
sense, we want a parsimonious description of the “logic” or “algorithm” being
implemented by the system. In neuroscience, cognitive science, and systems
biology, it is common to talk about computations being performed by a system
at the aggregate scale (Flack, 2017; Marr and Poggio, 1976; Dennett, 2014).
The “logic” or “algorithm” that we want is precisely a simplified, compressed
model of the mapping from the information contained in individuals to the
information contained in the aggregate state (Marr and Poggio, 1976; Flack and
Krakauer, 2011), one that might be used for control (Tomlin andAxelrod, 2005).

The focus here is on information and computation because, by definition,
adaptive systems use relevant information about the state of the world to behave
appropriately. Many aspects of adaptive systems are best understood in terms
of maximizing relevant information (Nemenman, 2012; Sharpee, 2017), and
biology is commonly conceptualized as being fundamentally informational

⁵ In high-energy physics, renormalization explains how the laws of physics appear different when
average energies are much different, as in, for instance, cosmological epochs just after the Big Bang.
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(Krakauer et al., 2011; Davies and Walker, 2016). As one specific example, the
visual system has been shown in multiple ways to be informationally optimized:
the retina adapts to the statistics of incoming stimuli in a way that maximizes
information transfer (Smirnakis et al., 1997), and the properties of retinal cell
types produce optimal information transfer for images with statistics found in
natural scenes (Kastner, Baccus, and Sharpee, 2015).

Essentially, our goals are the same as those of rate-distortion theory. We want
to throw away information that is least important for the computation (lowering
the “rate”) and then to measure how well the reduced model performs (measur-
ing the “distortion”). In the ideal case, the compressed representation exactly
preserves all the aggregate properties that we care about predicting. Doing this
efficiently—getting the most power for predicting aggregate properties given a
limited amount of retained model information—is precisely the aim of rate-
distortion theory and the closely related information bottleneck framework
(Still, 2014).

In general, it is not guaranteed that model compression will work. We can
imagine situations in which we are unlucky and predictions are impossible
without knowing the precise state of every element of the system.⁶ Happily for
scientists, a (somewhatmysterious) property of our universe is that many details
are often unimportant to what we care about (Transtrum, 2015). Compression
techniques rely on systems being low-dimensional in some representation,
and the trick is to find the right representation. As an example, the JPEG com-
pression format preserves information that is most salient to human observers,
and it does a good job for the typical sorts of images we encounter. Similarly,
compression techniques for models need to know what aggregate-level features
are important and cannot be “one size fits all.”

Three broad approaches in particular have been useful in the case of collective
behavior in living systems:

• Grouping into modules
• Focusing on aggregate-scale transitions: bifurcations, instability, and criti-

cality
• Explicit model reduction

Note, however, that in general this endeavor of approximation and simpli-
fication is rather hopelessly broad and all-encompassing. A huge number of
other related approaches exist, more or less specific to particular models and

⁶ For instance, in computer engineering, a hash function produces output that changes dramati-
cally with any small change to the input.
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systems (e.g., searching through a set of possible structural forms in cognitive
science (Kemp and Tenenbaum, 2008) or groupings of species (Feret et al.,
2009) in biochemical signaling networks). There is no single correct way to do
compression—this is the art of science.

3.1 Logic Approach 1: Emergent Grouped Logic Processors:
Clustering, Modularity, Sparse Coding, and Motifs

One simple way to reduce dimensionality in models of collective behavior is to
group components into distinct modules. This grouping can be accomplished
using a variety of closely related concepts, including clustering, modularity,
sparse coding, and community detection. The notion that groups can have
distinct collective properties is well understood in, for instance, solid-state
physics, where a phonon has a definite identity and physical effects but cannot
be understood in terms of any individual molecule. Similarly, in many collective
systems explanations formulated in terms of individual components are not
well posed. For example: Which gene causes disease X? Which neuron causes
decision Y? Which senator was responsible for passage of bill Z?

The phenomenon ofmodularity—whereby biological systems often consist of
relatively independent subgroups—suggests that discovering these groups will
produce more parsimonious descriptions. This can also be viewed as finding the
important or natural scales of a system (Daniels, Ellison, Krakauer, and Flack,
2016). Particularly in neuroscience (e.g., Bassett et al., 2013) and genomics (e.g.,
Segal et al., 2003), clustering or searching for modules is used to interpret high-
dimensional networks. Often, network inference procedures explicitly start with
clustering before doing inference, effectively forcing the inference step to happen
at a higher-order scale (Bonneau et al., 2006). Clustering can also be useful
whenperformed at the higher level of dynamics and transitions among aggregate
states. For instance, an inferred model of fly motion partitions behaviors into
a hierarchical set of stereotypical movements (Berman, Bialek, and Shaevitz,
2016).

Most basic is clustering based on some intuitive notion of similarity—for
instance, finding groups of individuals whose behavior ismost correlated.This is
also called community detection in networks. Similarly to network inference, a
huge number ofmethods have been developed, and the best performingmethod
will depend on the question being asked. Broadly, “hard clustering” methods
separate components into nonoverlapping sets, and “soft clustering” allows
components to be part of multiple groups. Some common general-purpose
methods include k-means, hierarchical clustering, and multivariate Gaussians.
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These basic clustering methods find intuitive groupings, but this does not
yet necessarily give insight into the logic that produces a system’s output. For
instance, a simple clustering method will ask for the number of desired clusters
k, but without further specifying the problem, we can only choose k arbitrarily.
Instead, we want to choose k based on the aspects of the system we care most
about, which in this case is its informational output. This leads us toward
techniques written in the language of information theory, such as sparse coding
(Daniels et al., 2012) or rate-distortion clustering methods (Slonim, Atwal,
Tkacik, and Bialek, 2005). For instance, sparse coding can describe a system
parsimoniously in terms of commonly appearing active subgroups, and then
information theory can measure how much this reduces the information we
need to remember in order to best predict future co-occurring individuals. The
general idea is to specify a “distortion function,” defining what information
we want to retain,⁷ and then to vary a single parameter 𝜆 that determines the
complexity of the representation. For small 𝜆, we favor more accuracy and more
clusters, in the extreme case putting each component into its own cluster (at the
bottom of Figure 3.2). As 𝜆 increases, we group components into larger clusters
in a way that retains the most information about the system’s output (moving
toward the top of Figure 3.2).

Another approach, currently less automated, looks for patterns in network
connectivity and dynamics that have known informational or logical function-
ality. These are known as functional motifs (Alon, 2007) or logical subcircuits
(Peter and Davidson, 2017). The overabundance of some types of motifs is
suggestive that they are more useful for information processing, and the compu-
tational properties of these motifs has been explored at length (e.g., Alon, 2007;
Payne and Wagner, 2015). In this way, we can think of clusters and motifs as
intuitive parts from which more complicated computations are built.

3.2 Logic Approach 2: Instability, Bifurcations, and Criticality

Grouping individual components is a useful step, but it may not tell us much
about the system’s logic. Another useful approach is to describe the system’s
behavior in terms of collective transitions or instabilities that control changes
among aggregate informational states.

⁷ Note that the optimal clusters depend on the distortion function. This captures the fact that the
best representation of a system depends on which aspects of the system we consider to be relevant
(Shalizi and Moore, 2003). In the case of systems for which we wish to understand the origins of a
particular aggregate function,we can take this aggregate “output” to define the relevant informational
states.
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This focus on higher-level logic is also advantageous in that it sidesteps issues
of the inability to constrain parameters (section 2.3), especially when there are
unmeasured but important components (as is often the case in, for instance,
neuroscience and cell biology). As one example, the identity of stable functional
states in a gene-regulatory network has been shown to be robust to parameter
changes (Jia, Jolly, and Levine, 2018).

Informational states often correspond to those that includemany components
or those seen at long timescales. These lead to two mathematical limits and two
domains of theory: (1) the limit ofmany components leads to transitions studied
in statistical physics using the language of phases and criticality, and (2) the limit
of large time leads to transitions among attractors studied in dynamical systems
using the language of bifurcations.

3.2.1 Fisher Information and Criticality
In an equilibrium system, we can make an analogy with statistical physics and
talk about a system’s phases: What are the coarse-grained aggregate states that
characterize the system? As in Figure 3.3, information that washes out at the
aggregate scale allows us to ignore some individual-scale details. Information
that grows can produce well-separated, distinct aggregate states. These states
are primed to become important at the aggregate scale as they carry specific
information about the individual scale—they become informational states.

What causes these emergent phases? In physics and in collective behavior
more generally, we think about this by considering how the system changes as
we move away from the individual level—more atoms, more molecules, more
people. Intuitively, whether information is amplified or decays depends on
how perturbations spread through a system (Daniels, Krakauer, and Flack, in
preparation). A perturbationmay die out or be overwhelmed by noise, becoming
smaller as it spreads to more individuals. This corresponds to an irrelevant,
compressed direction in parameter space in Figure 3.3. Or the perturbation can
be amplified, becoming larger in magnitude as it spreads, corresponding to a
relevant, growing direction in Figure 3.3. It is this latter case that corresponds
to a collective instability that can produce distinct aggregate states (Daniels
et al., 2017; Daniels, in preparation). In renormalization group flows, this
instability comes from an effective parameter value being amplified as the scale
increases.⁸ Importantly, these instabilities can be connected to computational
functions such as consensus formation and decision making (Daniels, Flack,
and Krakauer, 2017). This process through which instabilities create distinct

⁸ More general cases of collective behavior are often trickier to represent formally in the
renormalization group language because the aggregate states we are interested in are not always
simple sums over individuals.
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aggregate states, the transition between components behaving as if “anything
goes” versus “we have all settled on this particular arrangement,” is known as
symmetry breaking in physics (Sharpee, 2017; Anderson, 1972; Sethna, 2006).
The notion that symmetry breaking and the creation of distinct attractors are
fundamental to defining meaning in biology has been explored by numer-
ous authors (Solé et al., 2016; Anderson, 1972; Brender, 2012). Cell types are
explained as attractors of gene-regulatory networks (Lang, Li, Collins, and
Mehtr, 2014), and swarming and milling states of fish schools are interpreted
as collective phases (Tunstrom et al., 2013).

As inputs or individual behavior change, how do they control changes in these
aggregate states? This is key to describing information processing and can be
measured using the same Fisher information that we used tomeasure sensitivity
to parameters in section 2.3 (Eq. [3.5]). A crucial insight inmaking a connection
to statistical physics is that phase transitions are defined by extreme system
sensitivity (Daniels et al., 2017; Daniels et al., in preparation). This is intuitively
clear in that small changes in control parameters lead to systemwide changes
in behavior at a phase transition: changing your freezer’s temperature from –1
degree C to+1 degree C creates very different behavior of the watermolecules in
the ice cube tray. This intuition is made sharp by the Fisher information, which
has been shown to become infinite precisely at phase transitions (Prokopenko,
Lizier, Obst, and Wang, 2011).⁹

We can think of the Fisher information asmeasuring amplification: the degree
to which information at the small scale has large, aggregate-scale effects. This
can measure the sensitivity of the structure in a social animal group to changes
in individual bias toward conflict (Daniels et al., 2017) or the sensitivity of a
group of fish to an individual who detects a predator (Sosna et al., 2019). In
this way, the informational perspective is useful for framing the idea of phase
transitions in biology. Even in finite systems (away from the limit of an infinite
number of components that produces sharp “true” phase transitions), the Fisher
information connects with biological function as a generalized measure of
functional sensitivity.

When viewing biological collectives as computers whose output must be
sensitive to changing input, it is perhaps unsurprising that many are found to
lie near such instabilities. “Nearness to criticality” has been found across many
collective systems (Mora and Bialek, 2011), ranging from neurons (Cocchi,
Gollo, Zalesky, and Breakspear, 2017) to flocks (Bialek et al., 2014) to societies

⁹ Technically speaking, this is true only at continuous-phase transitions because an energy barrier
is associated with discontinuous-phase transitions (leading to hysteresis) that prevents a given
(symmetry broken) state from being easily poked into a new aggregate state. Still, the long-time
equilibrium state becomes infinitely sensitive to perturbations at discontinuous transitions.
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(Daniels et al., 2017). Studies demonstrating criticality typically start with an
inferred model and show that small changes to parameters can bring the system
to a peak in sensitivity, or measure other indications of self-similarity arising
from the system being at a marginal point between information amplification
and decay (Daniels et al., in preparation).

It is not necessarily the case that maximal sensitivity is best, and it may be
advantageous for adaptive systems to move closer or further from criticality.
There is some evidence, for instance, that distance from criticality in the brain
varies over the sleep–wake cycle (Priesemann, Valderrama, Wibral, and van
Quyen, 2013). Also, fish schools change their density to respond to the perceived
level of threat of a predator (Sosna et al., 2019). This can be interpreted as
moving closer to criticality when fish feel threatened (letting changes spread
more quickly through the school) and staying further from criticality otherwise
(to avoid responding to random uninformative changes in individual behavior).
In a social system, this distance has been measured in biologically meaningful
units as the number of individuals whose behavior would have to change to get
to a point of maximal sensitivity (Daniels et al., 2017).

3.2.2 Dynamical Systems and Bifurcations
If our model is deterministic and dynamic (as in dynamical inference, section
2.2.2), it oftenmakes sense to think of the stable attractors as defining logic states
of the system. This viewpoint, asking about the system’s behavior in the limit
as time t → ∞, is analogous to the large number limit that defines phases in
equilibrium models. And analogously to the mathematics of phase transitions,
here themachinery of nonlinear dynamics (Strogatz, 1994) gives us the language
of bifurcations for describing the changes of state that describe a system’s logic.
(This view of thinking of dynamics as computation has been explored and
debated at length in cognitive science; e.g., Michell, 1994; Beer, 2014.)

As an example, consider a system that performs a reproducible dynamic
response to a stimulus, such as a worm responding to the application of heat
by changing its speed and direction of motion (Daniels, Ryu, and Nemenman,
2019).We are certain that this behavior is controlled by neurons and so we could
attempt to infer a model at the level of individual neurons, but we will consider
a case in which data at this level of detail is not available. Instead, as shown in
Figure 3.4, we have data describing the speed of the worm as a function of time
for trials with varying heat intensity, which we treat as input to the system. The
adaptive model selection approaches described in section 2.2 can then be used
to infer an effective model that uses the types of saturating interactions that are
common to biological systems, capturing the dynamics at a coarse-grained level.
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Figure 3.4 Phase space structure as logic. In this caricatured example, time series
data leads to an effective dynamical model (represented as nodes and arrows in the
middle row) that can predict the result of arbitrary dynamical input. The inference
procedure makes use of effective dynamical variables, which can be interpreted as
encapsulating the behavior of groups of individual neurons, and in this case
includes an additional hidden variable X. Examining the phase space structure
(top) produces a simple logic in terms of steady-state fixed points (filled dots, with
an unstable fixed point as an unfilled dot, nullclines as dotted lines, and dynamical
flow lines as solid arrows): the structure of the dynamics can be traced to a pair of
saddle-node bifurcations.

Even this coarse-grained representation can be used as a starting point to
describe the logic of the system. We abstract to the level of logic by examining
the phase space structure of the inferred model, shown in the top row of Figure
3.4.1⁰ In this scenario, the heat input induces a bifurcation that switches the
system between distinct patterns of motion. Even if the system does not ever

1⁰ In the case shown in Figure 3.4, the inferredmodel is two-dimensional.This case is particularly
simple because, using Morse–Smale theory (Palis and de Melo, 1982), it is possible to uniquely
classify almost all (compact) two-dimensional-phase portraits according to the number and types of
attractors. It is not always possible to perform such a classification of dynamical systems in higher-
dimensional cases. Particularly in cases of deterministic chaos, simpler abstract descriptions may
not be possible.
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saturate to fully reach one of the fixed-state attractors, examining the model in
this way provides a succinct explanation for the switch-like behavior: it arises in
this imagined example from a pair of saddle–node bifurcations. Furthermore, to
the extent that the effective model is a sufficiently realistic representation of the
behavior of coarse-grained groups of neurons, any future explanation in terms
of individual neurons will be consistent with the inferred logic.

3.3 Logic Approach 3: Explicit Model Reduction

In the previous sections, we looked for specific reduced representations: group-
ing individual components, characterizing the system using sensitivity with
respect to certain directions in parameter space, or deriving the structure of
attractors. In a more general context, it has long been a dream to produce auto-
mated approximations and model simplifications that begin with a complicated
model and produce a simplermodel of the same type.The hope is to find explicit
approximations of known detailed models.

Dynamical models written in the form of a Markov process can be analyzed
using the 𝜀 machine formalism (Shalizi and Crutchfield, 2001). Starting with a
known Markov process, this formalism defines the minimally complex Markov
model that exactly reproduces the behavior of the original process. Recent
developments have generalized this reasoning to the more typical case in which
we cannot produce a smaller model that produces the exact same predictions,
but instead we look to maximize predictive power while restricting the model
size (Marzen and Crutchfield, 2017).

As we saw in section 2.3, sloppiness in models suggests that lower-
dimensional representations should be good approximations. Another particu-
larly elegantmethod uses the same information geometry that defines sloppiness
to find such approximate models. Treating the Fisher information matrix as
a metric tensor, following geodesics corresponds to mapping out the model
manifold, the space of possible outputs of the model. Following the sloppiest
direction corresponds to changing parameters in away thatminimally affects the
measurable outputs and often approaches boundaries on the model manifold,
places where taking combinations of parameters to infinity does not change
the model output (Transtrum and Qiu, 2016). In this way, mathematical limits
corresponding to simplifying approximations can be found in a semiautomated
way. For example, starting with a more complicated mechanistic model for
enzyme kinetics, the method can automatically discover the approximations
that lead to the widely used Michaelis–Menten model, which assumes that
the substrate is in instantaneous chemical equilibrium (Transtrum and
Qiu, 2016).
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4. The Future of the Science of Living Systems

We observe that proteins, neurons, ants, fish, politicians, and scientists each
create structures that process information and perform impressive collective
feats. Obtaining a deep understanding of how parts come together to act as an
adaptive whole is a worthy challenge for modern science.

The relationship between simplified theories, statistical physics, and machine
learning has been emphasized for many decades and continues to be fruitful
(Denker et al., 1987; Seung, Sompolinsky, and Tishby, 1992; Mehta and Schwab,
2014). The intent here is to use these ideas to understand many specific cases of
collective behavior observed in nature. Since each case is different and involves
so many details, it will likely be necessary to construct a new model for every
system. Automated methods will be key to expedite this process.

We might dream of a time in the not-too-distant future when all tasks in
inferring abstracted models can be accomplished by an automated machine.
Such a machine might use fish school data to locate a critical instability and
demonstrate how information about predators is maximized when the school
is closer to the instability. With spiking data from millions of neurons, it might
group them into functional clusters and show how they create an aggregate-
level gated sensory classifier. Using insulin expression data from millions of
patients, it might produce both patient-specific predictions and an abstract
dynamical framework for how interventions control the phase and frequency
of oscillations. In each case, the two-step process of Figure 3.2 means that we
get both the accuracy of the full messy predictive model and the parsimonious
abstracted theory describing the aggregate level logic.

This is not an outrageous goal. It will require conceptual ingenuity both on
the side of efficient inference and model selection and on paring down and
interpreting predictive models once they are built. The payoff to practitioners is
highly predictive models, and the payoff to science is a much improved position
to understand overarching principles in biology.

What are we expecting to find?There are already hints that broader principles
or strategies for collective information processing are at work. For instance, a
two-phase picture for robust collective decision making, moving from a dis-
tributed uncertain phase to a redundant consensus phase, arises naturally when
using the criticality framework of section 3.2.1. This two-phase implementation
of decision-making corresponds to a logical structure that could be tested across
a variety of biological and social systems (Daniels et al., 2017; Arehart, Jin,
and Daniels, 2018). We are beginning to see how a variety of systems regulate
distance from criticality at the individual scale, and how to classify behavioral
dynamics based on whether they include bifurcations or instabilities that induce



OUP ! UNCORRECTED PROOF

references 107

qualitative changes to the phase space structure based on sensory input (e.g.,
Daniels et al., 2018).

What might this approach be missing? First, inferring a full generative,
predictive model before using it to ask questions about logic and mechanism
may be overkill. In at least one case of dynamical inference, some qualitative
results about mechanisms that map from microscopic to macroscopic can be
obtained without using a specific generative model (Barzel, Liu, and Barabási,
2015). For instance, aggregate states and distance from a symmetry-breaking
transition can be identified and tracked using only observed variance in the
states of individual players (Mojtahedi et al., 2016). A second related point is that
this approach treats inference and abstraction as two separate steps. This creates
a clean caricature, with the two parts having different (and competing) goals:
inference favors predictability even if it meansmore complexity, and abstraction
favors simplicity even if it means less accuracy. Advances on these two fronts can
in some respects be made independently, with inference searching for details to
add to make a model more predictive (a common perspective in biology and
machine learning) and abstraction searching for ways to throw details away
(a common perspective in information theory and statistical physics). Yet the
two perspectives are not always clearly separable. We often have to find the right
abstract level to do inference at all, as in regularized models, and we may be able
to describe logic without having to infer lower-level mechanisms. Ultimately, it
is in the tension of combining these two perspectives that science progresses.

5 Acknowledgments

The ideas presented here have been influenced by numerous fruitful discussions with
the C4 Collective Computation Group, particularly Jessica Flack, David Krakauer, Chris
Ellison, and Eddie Lee. Thanks to Ken Aiello for helpful comments on an earlier draft.

References

Alon, U. (2017). “Network Motifs: Theory and Experimental Approaches.” National
Reviews Genetics, 8(6): 450–461.

Amit, D. J., H. Gutfreund, and H. Sompolinsky. (1985). “Spin-Glass Models of Neural
Networks.” Physical Review A, 32(2): 1007–1018.

Anderson, P. (1972). “More Is Different.” Science, 177.4047 (1972), 393–396.
Arehart, E., T. Jin, and B. C. Daniels. (2018). “Locating Decision-Making Circuits in

a Heterogeneous Neural Network.” Frontiers in Applied Mathematics and Statistics,
4: 11.

Babtie, A. C., and M. P. H. Stumpf. (2017). “How to Deal with Parameters for Whole-Cell
Modelling.” Journal of the Royal Society Interface, 14(133): 20170237.



OUP ! UNCORRECTED PROOF

108 inferring the logic of collective information processors

Barzel, B., Y.-Y. Liu, and A.-L. Barabási. (2015). “Constructing Minimal Models for
Complex System Dynamics.” Nature Communications, 6: 7186.

Bassett, D. S., et al. (2011). “Dynamic Reconfiguration of Human Brain Networks during
Learning.” Proceedings of the National Academy of Sciences, 108(18): 7641–7646.

Bassett, D. S., et al. (2013). “Robust Detection of Dynamic Community Structure in
Networks.” Chaos, 23: 013142.

Beer, R. D. (2014). “Dynamical Systems and Embedded Cognition.” In K. Frankish and
W. Ramsey (eds.), The Cambridge Handbook of Artificial Intelligence, (pp. 128–148).
Cambridge: Cambridge University Press, 2014.

Berman, G. J., W. Bialek, and J.W. Shaevitz. (2016). “Hierarchy and Predictability in
Drosophila Behavior.” Proceedings of the National Academy of Sciences, 113(42): 11943.

Bialek, W., et al. (2014). “Social Interactions Dominate Speed Control in Poising Nat-
ural Flocks near Criticality.” Proceedings of the National Academy of Sciences, 111:
7212–7217.

Bonneau, R., et al. (2006). “The Inferelator: An Algorithm for Learning Parsimonious
Regulatory Networks from Systems-Biology Data Sets De Novo.” Genome Biology,
7(5): 1.

Box, G. E. P. (1979). “Robustness in the Strategy of Scientific Model Building.” Army
Research Office Workshop on Robustness in Statistics, pp. 201–236.

Brender, N. M. (2012). “Sense-Making and Symmetry-Breaking: Merleau-Ponty, Cogni-
tive Science, and Dynamic Systems Theory.” Symposium: Canadian Journal of Conti-
nental Philosophy, 17(2): 246–270.

Brunton, S. L., J. L. Proctor, and J. N. Kutz. (2016). “Discovering Governing Equations
from Data by Sparse Identification of Nonlinear Dynamical Systems.” Proceedings of
the National Academy of Sciences, 113(15): 3932–3937.

Cocchi, L., L. L. Gollo, A. Zalesky, and M. Breakspear. (2017). “Criticality in the Brain.”
Progress in Neurobiology, 158: 132–152.

Cocco, S., and R. Monasson. (2012). “Adaptive Cluster Expansion for the Inverse Ising
Problem: Convergence, Algorithm and Tests.” Journal of Statistical Physics, 147: 252.

Couzin, I. D. (2009). “Collective Cognition in Animal Groups.” Trends in Cognitive
Sciences, 13(1): 36–43.

Crutchfield, J. P., and M. Mitchell. (1995). “The Evolution of Emergent Computation.”
Proceedings of the National Academy of Science, 92: 10742–10746.

Daniels, B. C., et al. (2018). “Criticality Distinguishes the Ensemble of Biological Regu-
latory Networks.” Physical Review Letters, 121(13): 138102.

Daniels, B. C., and I. Nemenman. (2015). “AutomatedAdaptive Inference of Phenomeno-
logical Dynamical Models.” Nature Communications, 6: 8133.

Daniels, B. C., C. J. Ellison, D. C. Krakauer, and J. C. Flack. (2016). “Quantifying
Collectivity.” Current Opinion in Neurobiology, 37: 106–113.

Daniels, B. C., D. C. Krakauer, and J. C. Flack. (2017). “Control of Finite Critical Behavior
in a Small-Scale Social System.” Nature Communications, 8: 14301.

Daniels, B. C., D. C. Krakauer, and J. C. Flack. (in preparation). “Distance fromCriticality
in Adaptive Collective Behavior.”

Daniels, B. C., D. C. Krakauer, and J. C. Flack. (2012). “Sparse Code of Conflict in a
Primate Society.” Proceedings of the National Academy of Sciences, 109(35): 14259.

Daniels, B. C., et al. (2008). “Sloppiness, Robustness, and Evolvability in Systems Biology.”
Current Opinion in Biotechnology, 19(4): 389–395.



OUP ! UNCORRECTED PROOF

references 109

Daniels, B. C., J. C. Flack, and D. C. Krakauer. (2017). “Dual Coding Theory Explains
Biphasic Collective Computation in Neural Decision-Making.” Frontiers in Neuro-
science, 11: 313.

Daniels, B. C.,M.Dobrzynski, andD. Fey. (2018). “Parameter Estimation, Sloppiness, and
Model Identifiability.” In B. Munsky, L. Tsimring, and W. Hlavacek (eds.),Quantitative
Biology:Theory, ComputationalMethods, andModels. Cambridge,MA:MITPress, 271.

Daniels, B. C., W. S. Ryu, and I. Nemenman. (2019). “Automated, Predictive, and
Interpretable Inference of Caenorhabditis Elegans Escape Dynamics.” Proceedings of
the National Academy of Sciences, 116(15), 7226–7231.

Davies, P. C. W., and S. I. Walker. (2016). “The Hidden Simplicity of Biology.” Reports on
Progress in Physics, 79: 102601.

Denker, J., et al. (1987). “Large Automatic Learning, Rule Extraction andGeneralization.”
Complex Systems, 1: 877–922.

Dennett, D. (2014). “The Software/Wetware Distinction: Comment on ‘Unifying
Approaches From Cognitive Neuroscience And Comparative Cognition’ by W.
Tecumseh Fitch.” Physics of Life Reviews, 11: 367–368.

Feret, J., et al. (2009). “Internal Coarse-Graining of Molecular Systems.” Proceedings of
the National Academy of Sciences, 106(16): 6453–6458.

Flack, J. (2017). “Life’s Information Hierarchy.” In S. I. Walker, P. C. W. Davies, and
G. F. R. Ellis (eds.), From Matter to Life: Information and Causality. Cambridge:
Cambridge University Press, 283.

Flack, J. C., and D. C. Krakauer. (2011). “Challenges for Complexity Measures: A
Perspective from Social Dynamics and Collective Social Computation.” Chaos: An
Interdisciplinary Journal of Nonlinear Science, 21(3): 037108.

Ganmor, E., R. Segev, and E. Schneidman. (2011). “Sparse Low-Order Interaction
Network Underlies a Highly Correlated and Learnable Neural Population Code.”
Proceedings of the National Academy of Sciences, 108(23): 9679–9684.

Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group.
New York: Westview Press.

Gunawardena, J. (2014). “Models in Biology: ‘Accurate Descriptions of Our Pathetic
Thinking’. ” BMC Biology, 12: 29.

Hoel, E. P., L. Albantakis, and G. Tononi. (2013). “Quantifying Causal Emergence Shows
ThatMacro Can BeatMicro.” Proceedings of the National Academy of Sciences, 110(49):
19790–19795.

Jia, D., M. K. Jolly, and H. Levine. (2018). Uses of Bifurcation Analysis in Understanding
Cellular Decision-Making.” In B. Munsky, L. Tsimring, and W. Hlavacek (eds.),
Quantitative Biology: Theory, Computational Methods, and Models. Cambridge, MA:
MIT Press, 357.

Kastner, D. B., S. A. Baccus, and T. O. Sharpee. (2015). “Critical and Maximally Informa-
tive Encoding between Neural Populations in the Retina.” Proceedings of the National
Academy of Science, 112: 2533–2538.

Kauffman, S. (1969). “Metabolic Stability and Epigenesis In Randomly Constructed
Genetic Nets.” Journal of Theoretical Biology, 22(3): 437–467.

Kemp, C., and J. B. Tenenbaum. (2008). “The Discovery of Structural Form.” Proceedings
of the National Academy of Sciences, 105(31): 10687–10692.

Krakauer, D. C., et al. (2011). “The Challenges and Scope of Theoretical Biology.” Journal
of Theoretical Biology, 276(1): 269–276.



OUP ! UNCORRECTED PROOF

110 inferring the logic of collective information processors

Landauer, R. (1961, July). “Irreversibility and Heat Generation in the Computational
Process.” IBM Journal of Research and Development, 5: 183–191.

Lander, A. D. (2010). “The Edges of Understanding.” BMC Biology 8: 40.
Lang, A. H., H. Li, J. J. Collins, and P. Mehta. (2014). “Epigenetic Landscapes Explain

Partially Reprogrammed Cells and Identify Key Reprogramming Genes.” PLoS Com-
putational Biology, 10(8):

Lee, E. D., and B. C. Daniels. (2019). “Convenient Interface to Inverse Ising (ConIII):
A Python 3 Package for Solving Ising-Type Maximum Entropy Models.” Journal of
Open Research Software, 7: 3.

Lukoševicius, M., and H. Jaeger. (2009). “Reservoir Computing Approaches to Recurrent
Neural Network Training.” Computer Science Review, 3(3): 127–149.

Machta, B. B., R. Chachra, M. K. Transtrum, and J. P. Sethna. (2013). “Parameter
Space Compression Underlies EmergentTheories and PredictiveModels.” Science, 342
(6158): 604–607.

Marr, D. C., and T. Poggio. (1976). “FromUnderstanding Computation toUnderstanding
Neural Circuitry.” Massachusetts Institute of Technology Artificial Intelligence Labo-
ratory A.I. Memo 357.

Marzen, S. E., and J. P. Crutchfield. (2017). “Nearly Maximally Predictive Features and
Their Dimensions.” Physical Review, E 95 (2017), 051301(R).

Mehta, P., and D. J. Schwab. (2014). “An Exact Mapping between the Variational
Renormalization Group and Deep Learning.” arXiv preprint 1410.3831.

Merchan, L., and I. Nemenman. (2016). “On the Sufficiency of Pairwise Interactions in
MaximumEntropyModels of Networks.” Journal of Statistical Physics, 162: 1294–1308.

Mitchell,M. (1998). “AComplex-Systems Perspective on the ‘Computation vs. Dynamics’
Debate in Cognitive Science.” Proceedings of the Twentieth Annual Conference of the
Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Associates, 710.

Mojtahedi, M., et al. (2016). “Cell Fate Decision as High-Dimensional Critical State
Transition.” PLoS Biology, 14(12): (2016), e2000640.

Mora, T., and W. Bialek. (2011). “Are Biological Systems Poised at Criticality?” Journal of
Statistical Physics, 144 (2011), 268–302.

Natale, J. L., D. Hofmann, D. G. Hernández, and I. Nemenman. (2018). “Reverse-
Engineering Biological Networks from Large Data Sets.” In B. Munsky, W. Hlavacek,
and L. Tsimring (eds,), Quantitative Biology: Theory, Computational Methods, and
Models. Cambridge, MA: MIT Press, 213.

Nemenman, I. (2012). “InformationTheory and Adaptation.” InM. E.Wall (ed.),Quanti-
tative Biology: FromMolecular to Cellular Systems, (Chapter 5). Boca Raton, FL: Taylor
and Francis.

Newman, M. (2010). Networks: An Introduction. New York: Oxford University Press,
2010.

Palis, J., Jr., and W. de Melo. (1982). Geometric Theory of Dynamical Systems. Berlin:
Springer-Verlag.

Payne, J. L., and A. Wagner. (2015). “Function Does not Follow Form in Gene Regulatory
Circuits.” Scientific Reports 5, 13015.

Peter, I. S., and E. H. Davidson. (2017). “Assessing Regulatory Information in Develop-
mental Gene Regulatory Networks.” Proceedings of the National Academy of Sciences,
114(23): 5862–5869.

Priesemann, V., M. Valderrama, M. Wibral, and M. Le Van Quyen. (2013). “Neuronal
AvalanchesDiffer fromWakefulness toDeep Sleep.” PLoS Computational Biology, 9(3):
e1002985.



OUP ! UNCORRECTED PROOF

references 111

Prokopenko, M., J. T. Lizier, O. Obst, and X. R. Wang. (2011). “Relating Fisher Informa-
tion to Order Parameters.” Physical Review E, 84(4): 41116.

Rosenthal, S. B., et al. (2015). “Revealing the Hidden Networks of Interaction in Mobile
Animal Groups Allows Prediction of Complex Behavioral Contagion.” Proceedings of
the National Academy of Sciences, 112(15): 4690–4695.

Roudi, Y., S. Nirenberg, and P. E. Latham. (2009). “Pairwise Maximum Entropy Models
for Studying Large Biological Systems: When They Can Work and When They Can’t.”
PLoS Computational Biology, 5(5): e1000380.

Rumelhart, D. E., and J. L. McClelland. (1986): Parallel Distributed Processing. Vol. 1.
Cambridge, MA: MIT Press.

Schmidt, M., and H. Lipson. (2009). “Distilling Free-Form Natural Laws from Experi-
mental Data.” Science, 324(5923): 81–85.

Schneidman, E., M. J. Berry II, R. Segev, and W. Bialek. (2006). “Weak Pairwise Correla-
tions Imply Strongly Correlated Network States in a Neural Population.” Nature, 440:
1007.

Schwab, D. J., I. Nemenman, and P. Mehta. (2014). “Zipf ’s Law and Criticality in
Multivariate Data without Fine-Tuning.” Physical Review Letters, 113(6): 068102.

Segal, E., et al. (2003). “Module Networks: Identifying Regulatory Modules and Their
Condition-Specific Regulators from Gene Expression Data.” Nature Genetics, 34(2):
166–176.

Sethna, J. (2006). Entropy, Order Parameters, and Complexity. New York: Oxford Univer-
sity Press.

Seung, H., H. Sompolinsky, and N. Tishby. (1992). “Statistical Mechanics of Learning
from Examples.” Physical Review A, 45(8): 6056.

Shalizi, C. R. and C. Moore. (2003). “What Is a Macrostate? Subjective Observations and
Objective Dynamics.” arXiv preprint cond-mat/0303625.

Shalizi, C. R., and J. P. Crutchfield. (2001). “Computational Mechanics: Pattern, Predic-
tion Strucutre and Simplicity.” Journal of Statistical Physics, 104: 817–879.

Sharpee, T. O. (2017). “OptimizingNeural Information Capacity throughDiscretization.”
Neuron, 94(5): 954–960.

Slonim,N.,G. S. Atwal,G. Tkacik, andW.Bialek. (2005). “Information-BasedClustering.”
Proceedings of the National Academy of Sciences, 102(51): 18297–18302.

Smirnakis, S. M., et al. (1997). “Adaptation of Retinal Processing to Image Contrast and
Spatial Scale.” Nature, 386(6620): 69–73.

Solé, R., et al. (2016). “Synthetic Collective Intelligence.” BioSystems, 148: 47–61.
Sosna, M. M. G., et al. (2019). “Individual and collective encoding of risk in animal

groups.” Proceedings of the National Academy of Sciences, 116(41): 20556–20561.
Stephens, G. J., L. C. Osborne, and W. Bialek. (2011). “Searching for Simplicity in the

Analysis of Neurons and Behavior.” Proceedings of the National Academy of Sciences,
108: 15565–15571.

Still, S. (2014). “Information Bottleneck Approach to Predictive Inference.” Entropy,
16(2): 968–989.

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. New York: Perseus.
Tomlin, J. C., and J. D. Axelrod. (2005), “Understanding Biology by Reverse Engineering

the Control.” Proceedings of the National Academy of Sciences, 102(8): 4219–4220.
Transtrum, M. K., and P. Qiu. (2016). “Bridging Mechanistic and Phenomenological

Models of Complex Biological Systems.” PLoS Computational Biology, 12(5): 1–34.



OUP ! UNCORRECTED PROOF

112 inferring the logic of collective information processors

Transtrum, M. K., et al. (2015). “Sloppiness and Emergent Theories in Physics, Biology,
and Beyond.” Journal of Chemical Physics, 143(1): 010901.

Tunstrom, K., et al. (2013). “Collective States, Multistability, and Transitional Behavior In
Schooling Fish.” PLoS Computational Biology, 9: e1002915.

Wilson, K. G. (1979). “Problems in Physics with Many Scales of Length.” Scientific
American, 241(2): 158–179.

Wolpert, D. H., J. A. Groschow, E. Libby, and S. DeDeo. (2015). “Optimal High-Level
Descriptions Of Dynamical Systems.” arXiv preprint 1409.7403v2.


	
	5 Acknowledgments
	References

